Hyperspectral image classification for mapping agricultural tillage practices

نویسندگان

  • Qiong Ran
  • Wei Li
  • Qian Du
  • Chenghai Yang
چکیده

An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal from large-scale remote sensing images. It includes a local region filter [i.e., Gaussian low-pass filter (GLF)] to extract spatial-spectral features, a dimensionality reduction process [i.e., local fisher’s discriminate analysis (LFDA)], and the traditional k-nearest neighbor (KNN) classifier, and is denoted as GLF-LFDA-KNN. Compared to our previously used local average filter and adaptive weighted filter, the GLF also considers spatial features in a small neighborhood, but it emphasizes the central pixel itself and is data-independent; therefore, it can achieve the balance between classification accuracy and computational complexity. The KNN classifier has a lower computational complexity compared to the traditional support vector machine (SVM). After classification separability is enhanced by the GLF and LFDA, the less powerful KNN can outperform SVM and the overall computational cost remains lower. The proposed framework can also outperform the SVM with composite kernel (SVM-CK) that uses spatial-spectral features. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10 .1117/1.JRS.9.097298]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote sensing of crop residue cover and soil tillage intensity

Management of plant litter or crop residues in agricultural fields is an important consideration for reducing soil erosion and increasing soil organic C. Current methods of quantifying crop residue cover are inadequate for characterizing the spatial variability of residue cover within fields or across large regions. Our objectives were to evaluate several spectral indices for measuring crop res...

متن کامل

Artificial Neural Network Approach for Mapping Contrasting Tillage Practices

Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensing approaches are promising for rapid collection of tillage information on individual fields over...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra

Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...

متن کامل

Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1) Hyperspectral Data

Soil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015